
Create an
application and
register it as an
OAuth Client

Prepare the
client assertion
JWT before
exchanging the
code for a token

Checklist verbs should be in present
tense since they are “to-do”

Construct the Authorization URL with
your OAuth client ID, scopes, redirect
URL, and code challenge

Change ‘my’ to ‘your’

Before you can begin the flow, you'll need to
register an OAuth client via an application. After
registering, you will get a client ID that the
authorization server will recognise, with the
client's corresponding scopes and redirect URLs.

For the purposes of this demo, we don't require
that you create an actual application. Instead, you
can use the demo application below that will be
stored in your browser's local storage.

The Redirect URL is where the Authorization
Server will call back to if it matches the Auth
code after a successful user login. While you
can submit multiple redirect URLs if needed,
for the purpose of this demo, we'll be using
just one.

If the redirect URL isn't a registered redirect
URL, the server will show an error and won't
redirect the user.

Scopes are used to control the access levels
granted to an access token. Access tokens
can have specific permissions, such as
READ_A or WRITE_B. If a client with a
READ_A scope tries to access an API
requiring READ_B access, the request will be
denied.

For this example, select all of the scopes
below to register the demo application. These
will be used in the later sections.

The JSON Web Key Set (JWKS) is a set of
keys containing the public keys used to verify
any JSON Web Token (JWT) issued by the
Authorization Server. For this demo, you may
generate a random JWKS below, and we will
store the corresponding private key in your
browser's local storage, to be used in later
steps.

In the actual client registration, instead of
specifying the JWKS in JSON form, you are
expected to host the JWKS in an endpoint of
your choice. You may refer to our guide on
creating the JWKS Endpoint.

Now that you have an active OAuth Client
registered from a base application, you may
continue the OAuth development process by
subscribing the application to any API, ideally
one that is protected by OAuth 2.1.

This API in the APEX API Gateway will
require the OAuth token generated at the end
of the OAuth flow.

Since only approved and subscribed
applications are allowed to transact with an
API behind the Gateway, we use the API key
which will be associated with the application
after generation to determine whether the
incoming request has the correct access
rights to the requested API.

Before redirecting the user to the
authorization server, the client needs to first
generate a secret code verifier and code
challenge.

The code verifier is a cryptographically
random string using the characters A-Z, a-z,
0-9, and the punctuation characters -._~
(hyphen, period, underscore, and tilde),
between 43 and 128 characters long.

Once the client has generated the code
verifier, it uses that to create the code
challenge.

For devices that can perform a SHA256
hash, the code challenge is a
BASE64-URL-encoded string of the SHA256
hash of the code verifier. Otherwise, the
same verifier string is used as the challenge.

Separate into two paragraphs:

With the code challenge generated, you can
now create the Authorization URL with your
application's client ID, scope(s), and redirect
URL of choice.

These are the parameters we have gathered
so far. You may navigate backwards to verify
the information below.

My OAuth Playground is requesting
permission to:

5. Prepare the client_assertion JWT
before exchanging the authentication
code for an access token

The user has logged in and given consent to
the scopes required. The Authorization
Server has redirected back to the specified
redirect URI (this page) with a short-lived
authentication code.

Before you can make a POST request to
exchange the authentication code for a valid
access token, you first need to prepare the
client_assertion parameter as part of
the POST request in the next step.

Using the values above, we can set up the base
signing options for the JWT (client_assertion).

Click the button below to create the
client_assertion with the options provided.

6. Exchange the authorization code for an
access token

The user has logged in and given consent to the
scopes required and the client_assertion token
has been generated.

You can now exchange the authorization code for
an access token. The client application will
construct a POST request to the token endpoint
with the parameters below:

Using the parameters above, we can construct the
POST request. The example below uses curl.

You have successfully completed the
entire Authorization flow!

With your new short-lived access token,
you can now try calling the demo API that
you have subscribed to earlier in the
tutorial.

Separate into two paragraphs:

